
MATH2050C Assignment 13

Section 5.6 no. 3, 4, 14, 15.

No need to hand in any problem.
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Monotone Functions, Continuity and Their Inverse

We study monotone functions and their inverse. We will pay attention only to increasing ones,
while the decreasing ones can be treated in a similar way. (Or observe that −f is increasing
when f is decreasing.)

First, we show that only jump discontinuity is admitted for monotone functions.

Proposition 1. Let f be an increasing function on some interval [a, b]. Then limx→x+
0
f(x) and

limx→x−
0
f(x) always exist for every x0 ∈ (a, b).

Proof. Claim α ≡ sup{f(x) : x ∈ [a, x0)} is the left hand limit and inf{h(x) : x ∈ (x0, b]} is the
right hand limit. Since f is increasing, we have f(x) ≤ f(b) which means α is a finite number.
To prove it is the left hand limit of f at x0, we need to show, for ε > 0, there is some δ such that
|f(x)−α| < ε for x ∈ (x0−δ, x0). By the definition of α, for ε > 0, there is some f(x1), x1 < x0,
such that f(x1) + ε > α. By monotonicity, it follows that f(x) + ε ≥ f(x1) + ε > α for all
x, x ∈ [x1, x0), so |f(x)−α| < ε, done. The right hand limit can be treated in a similar manner.

As a consequence of this proposition, we have

Proposition 2. An increasing function f is continuous on [a, b] if and only if the range of f is
[f(a), f(b)].

Proof. When f is continuous on [a, b], its image is an interval (Preservation of Interval Theo-
rem). Moreover, its maximum and minimum are attained (Max-Min Theorem). It follows that
f([a, b]) is equal to [m,M ] where m and M are respectively the minimum and maximum of f .
As f is increasing, [m,M ] is equal to [f(a), f(b)]. On the other hand, if f is not continuous at
some x0 ∈ (a, b), α ≡ limx→x−

0
f(x) < β ≡ limx→x+

0
f(x) according to Proposition 1. Now, the

set (α, β) \ {f(x0)} lie outside the range of f , hence [f(a), f(b)] cannot be an interval. The case
of possible discontinuity at a or b can be treated similarly.

Corollary 3. An increasing function f is continuous on (a, b),−∞ ≤ a < b ≤ ∞, if and only if
the range of f is (α, β) where α = inf f((a, b)) and β = sup f((a, b)).

Proof. We pick an ∈ R decreasing to a and bn increasing to b and then apply Proposition 2 to
f on each [an, bn].

In the following we set jf (x0) = f(x+0 )− f(x−0 ) where f is increasing and f(x+0 ) = limx→x+
0
f(x)

and f(x−0 ) = limx→x−
0
f(x) . Note that f is continuous at x0 if and only if jf (x0) = 0. (In

general, for any function f , one may define jf (x0) = |f(x+0 ) − f(x−0 )| provided the one-sided
limits limit. Then x0 is a continuity point if and only if f(x+0 ) = f(x0) and jf (x0) = 0.)

Proposition 4. Let f be an increasing function on [a, b]. For any given number α > 0, the set
{x ∈ [a, b] : jf (x) ≥ α} is a finite set.
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Proof. Pick N many points in this set, xN < xN−1 < · · ·x2 < x1. By monotonicity,

f(b)− f(a) = (f(b)− f(x+1 )) + (f(x+1 )− f(x−1 )) + (f(x−1 )− f(x+2 )) +

(f(x+2 )− f(x−2 )) + ((f(x−2 )− f(x+3 )) + · · ·+ (f(x−N )− f(a))

≥ (f(x+1 )− f(x−1 )) + (f(x+2 )− f(x−2 )) + · · ·+ (f(x+N )− f(x−N ))

≥ Nα .

It follows that N ≤ (f(b)−f(a))/α, that is, there are no more than (f(b)−f(a))/α many points
in this set. Hence this set is finite for each given α.

Theorem 5. An monotone function on (a, b),−∞ ≤ a < b ≤ ∞, has at most countably many
points of discontinuity.

Proof. Assume f is increasing on [a, b], a, b ∈ R first. Let Ej = {z ∈ [a, b] : limx→z+ f(x) −
limx→z− f(x) ≥ 1/j}. By Proposition 1, any discontinuity of f belongs to some Ej . Therefore,
the discontinuity set which is equal to ∪∞j=1Ej is a countable set. (The countable union of
countable sets is a countable set.)

When f is increasing on (a, b),−∞ ≤ a < b ≤ ∞, we pick an decreasing to a and bn in-
creasing to b and apply the previous paragraph to f on [an, bn] to conclude that the set
Dn = {x ∈ [an, bn] : f is discontinuous at x} is countable for each n. Therefore, the discon-
tinuity set of f over (a, b), which is the countable union of all Dn over n, is again a countable set.

In fact, Theorem 5 is valid for all monotone functions on any interval. You may modify the
proof here or there to suit all different cases.

Now we establish the continuity of the inverse of a continuous, strictly increasing function.

Theorem 6. Let f be a continuous, strictly increasing (resp. strictly decreasing) function on
(a, b). Its inverse function f−1 is a continuous, strictly increasing (resp. strictly decreasing)
function on (α, β) where α = inf{f(x) : x ∈ (a, b)} and β = sup{f(x) : x ∈ (a, b)}.
Proof. The inverse function clearly exists and is strictly increasing. It suffices to show that it
is continuous. Let y0 ∈ (α, β) and x0 = f−1(y0). We claim that limy→y+0

f−1(y) = x0. Let

{yn} → y0 from the right, we need to show limn→∞ f
−1(yn) = x0. To do this, fix two points

y1 < y0 < y2 in the interval so that y1 ≤ yn ≤ y2 for all n. Then f−1(y1) ≤ f−1(yn) ≤ f−1(y2)
shows that {f−1(yn)} is a bounded sequence, so by Bolzano-Weierstrass Theorem it has a
convergent subsequence f−1(ynj ) → z0. By the continuity of f , f(f−1(ynj )) → f(z0) which
means f(z0) = y0. It follows that z0 = x0. Now, for ε > 0, there is some j0 such that
|f−1(ynj ) − x0| < ε for all nj ≥ nj0 . (In fact, it is 0 ≤ f−1(ynj ) − x0 < ε.) As yn → y0 from
the right hand side, we can find a large n1 such that y0 ≤ yn ≤ ynj0

for all n ≥ n1. Then

0 ≤ f−1(yn)− x0 ≤ f−1(ynj0
)− x0 < ε for all n ≥ n1, that is, limn→∞ f

−1(yn) = x0 .

Similarly, we can show that limy→y−0
f−1(y) = x0. Hence, f−1 is continuous at y0.

As an application, consider the function f(x) = xn where n ∈ N. It is routine to check that
it is strictly increasing on [0,∞). By Theorem 6, its inverse function f−1 is continuous from
[0,∞). In fact, when n is odd, f is strictly increasing on (−∞,∞) so the inverse function exists
on (−∞,∞). We use the notation x1/n to denote f−1(x), so (x1/n)n = x and (xn)1/n = x which
means f(f−1(x) = x and f−1(f(x)) = x respectively holds on [0,∞).
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When n is a negative integer, xn is continuous, strictly decreasing on (0,∞) and its inverse x1/n

is a continuous strictly decreasing function on (0,∞).

When r = m/n is a rational number, we define its the r-th power by xm/n = (x1/n)m. It is a
continuous function on (0,∞). We refer to the text book for properties of this function.


